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The dependence of the mean dynamic characteristics of a continuous-flow chemical 

reactor on the intensity of longitudinal stirring (P&let number) in the presenceof 

the quasistationary periodic perturbations in the reagent concentration at the re- 

actor input is studied. The small perturbations method is used with the accuracyof 

up to the terms of third order of smallness for the case of a consecutively parallel 
chemical reaction, in the "weak" reaction approximation, to obtain an approximate 
analytic solution for the problem of concentration distribution in a one-dimensional, 
continuous-flow chemical reactor. The solution obtained is used to study the effect 

of the P&let number on the mean characteristics of the reactor, namelyonthedegree 

of conversion, selectivity and yield. It is establishedthatthepresence ofperiodic 

variations in the initial reagent concentration can alter significantly the charact- 

er of dependence of the mean degree of conversion on the intensity of the longitud- 

inal stirring, as compared with the steady mode. The dependence of the PGcletnunlber 

ensuring the maximum value of the mean degree of conversion on the reactorcharacter- 

istics is obtained, and the characteristic domains of parameters variationinwhich 

the influence of the longitudinal transport on the dynamic behavior of the reactor 

is different, are found. 

The interest shown in the study of nonsteady modes of continuous-flow chemical 
reactors is justifiedbythe fact that, aswas showninanumberoftheoreticalandexperi- 

mental works, use of the forced periodic modes may lead to increase in the reactor 

performance efficiency compared with the steady mode /l-55/. The determination of 

optimal conditions for a reactor working in a nonsteady mode, requires solving of a 

number of problems connnected with the study of the effect of the chemical reactor 

parameters on its dynamic characteristics. The expediency of such a formulation of 

the problem is justified by the fact that, as is shown below, the conditions fcrcar- 

ring out a chemical technological process which are optimal in the steady mode, are 

no longer optimal in the nonsteady mode. The intensity of the longitudinal stirring 
characterized by the PLclet number represents the parameter which effects signific- 

antly the performance of the chemical reactor. Study of the dependence of the mean 

dynamic characteristics on the P&let number is the aim of this paper. 

The authors of /6/ were the first to attempt the estimation of the effect of 

the transport processes in a tubular reactor on the magnitude of a nonsteady shift 

characterizing the deviation of the mean dynamic characteristics from their corres- 

ponding steady state values. Numerical methods were used to establish that for 

certain particular values of the defining parameters the longitudinal stirring in- 

creases the nonsteady shift. The shift attains its maximum value in a reactor with 

perfect stirring, and a minimum in a reactor with perfect displacement. Moreover, 

an analytic study of the dependence of the nonsteady shift on the P&let number has 

shown /7/, in particular, that the regularity discovered numerically in /6/ is not 
universal and depends on the particular choice of the numerical valuesofthereactor 

parameters. The "weak" reaction approximation was used in /7/ to obtainananalytic 

criterion determined by the kinetic relationship and allowing the establishment of 

the manner in which the longitudinal stirring affects the nonsteady shift. In /8/ 

it was established that in certain cases the dependence of the nonsteady shift on 

the PGclet number can be nonmonotonous. Nonsteady modes in a tubular reactor at 

low Pgclet numbers were investigated in /9/. 

1. Formulation of the problem and approximate solution. Let us consider a one- 

dimensional model of a continuous-flow isothermal chemical reactor with longitudinal stirring. 

Let a consecutively parallel chemical reaction take place in the reactor according to the 

equation K, Kz 
A---t& A+B--+2C 
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Using the dimensionless variables we can write the nonsteady equations, boundary and initial 
conditions for the concentration profiles of the components A, B and C within the reactor, in 
the form 

1.1) 

2 = 4 2 - 2 - (k;cAcB - kl’cA) 

-$ = a-f& - 2 + 2ka‘cAcB 

x=0, - + -f-g- + c-4 = CAf (f), -$~+es-:-O, 
_g2+CC_=0 

X=4, 
aCh acB kc 

-0 --&Edledz_ 

t = 0, CA (x, 0) = '--Am (x), 
GA GB 

Cfj==----* 

CB t; 0) = CBZ~ (x)3 CC (x, 0) = @in (2) 
X 

ch=c, 
A0 

c 
A0 

G2=rt 
A0 

X=T 

p+_ k++, k2’= 
h&LCA, 2-U 

c;’ t=- L 

Here Xis the spatial coordinate (O< X < L), L is the reactor length, 2' is time, CA, Cg, Cc 

are the components concentration in the reactor, C Af is the concentration of the reacting 

species at the' reactor input, CAM is the steady state value of the concentration CA/r u is 

the rate of reagent supply, D is the effective diffusioncoefficient,K,andK,arethe 

A at the reactor input is a periodic function of time, and its meanvalueoverasingle 
period is equal to its steady state value, i.e. (cAf(t)) = 1. 

Performing certain additions, we obtain from (1.1) 

x=0, -$-& c=CAf(t); x=i, -$=o 
t = 0, c (5, 0) = e,,,(%), c = CA + CB -+ CC 

In what follows, we shall concern ourselves only with the periodic steady state solutions in- 
dependentofthe form of the initial distribution. Averaging over a period, we obtain from 
(1.2) the following expression for the steady state mode: 

<CA) + <QJ> + <cc) = 1 (1.3) 

Let us introduce the following average quantities: (E) = 1 - <CA(~)) iS the degree of 

reagent conversion, <sn> = <cs(1)>/(~>, (SC)= (~(l)>i<E) is the selectivity referred to the 
products, and <ne>=<cs(1)), <n&A <CC(~)> are the product yields. We shall determine the re- 
actor characteristics averaged over time in the presence of periodic perturbations in the re- 
agent concentration A at the reactor input, and investigate the dependence of these characer- 
istics cn the reactor parameters, 
the P&let number. 

in particular on the transport processes characterized by 
From (1.3) it follows that <g> = ("(1s) + (nc>, <.?a> + <SC> = I, therefore from 

now on we shall only consider the first two equations of the system (1.1). 
We shall solve the problem (1.1) in the "weak" chemical reaction approximation, assuming 

that the dimensionless chemical reaction rates are small, i.e. k,' = ek, = O(&),kzr = .skz = Q(E), 

E < 1. We shall limit ourselves to the quasistationary periodic perturbations assuming that 
the function cat(t) varies little over the period comparable with the characteristictimeduring 
which the reagent remains within ,the reactor. Seeking the solution of (1.1) in the form of 
a series in powers of E accurate to within terms of third order of smallness, we obtain the 
following expression for the quasistationary distribution of concentration in the reactor: 

CA (t, t) = CA0 - &cA&, (p, .2) - e*k, (k,CAo’ - k$Ao)X 

51 (p. r) + 6' {[k,' (&Go' - &CAO) + k,k, (k2CAoa + 
k$ao’)f 9, (p, 5) + k,2k,caoz~, (P, x)} + 0 (Ed) 

CB (2, t) = Ek$ao% (p, zf - &*k, (kzc.2 + k,CAo) i2 (P, z) i_ 
es ~~k~‘(k*cA~ - bCA6? t Wz &Cm? + .+A$)1 S2, (P, z) +- 

k~~k~CA~~~~ (P, 4) -t- 0 (E&) 

(1.4) 
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2. Influence of the longitudinal dispersion. The approximate analytic solution 
of the problem obtained above enables us to investigate the dependence of the mean dynamic 
characteristics of the reactor on the magnitude of the longitudinal dispersion in the reactor 
(on the P&let number). Using the expressions (1.4) for the mean values of the degree of con- 

version, selectivity and yield, we obtain 

(5) = akl + s*h-, (&CA,,' - k,cAo)) & (P) - a3 {lk,* (k,CAo' - (2.1) 

k,cao> +k,k,(k&_& + k,C&l Q, (p) + k,2k,(cao2) 52% (p)j + 0 (E4) 

(se) = 1 - 2&k, (ca,,‘> Q (P) + 0 (6’) 

(SC) = 2&k, (c,&,*) 52 (P) + 0 (E2) 

<qs) = ck, - E’Q, (k,cm2 + klc_zw) Q (P) + 0 (c3) 

(qc) = W&k, (c& Q V’) + 0 b3) 

(2.2) 

where 

Q(P)di(P,l)=~ ++++ 
Q, (P) E St1 (P, 1) = 4 ‘“-1; i, + q + + + + 
n,(P),Q,(P,l)=~--+a+~ 

Clearly, the dependence of the initial reactor characteristics on the longitudinal stirring 

intensity is determined by the functions Q (P),Q, (P), 9% (P). Operating the reactor in the 

nonsteady mode leads to an increase in the mean values of the degree of reagent conversion, 

selectivity and yield of the product C,and to a decrease in the mean values of the selectiv- 

ity and yield of the product B. Analyzing the expressions (2.2) we can conclude that the 

character of the dependence of the selectivity and yield on the P&let number does not change 

when the reactor operation passes from the steady to the nonsteady mode, i.e. the optimal 

level of stirring (P&let number) in the steady mode remains, for these characteristics (sel- 

ectivity and yield) optimal also in the nonsteady mode. This conclusion however is not true 

for the mean degree of conversion. 
Let us investiate this problem in more detail. We can assume without loss of generality 

that cAi (t) = 1 + ‘p (t)? and q(l): -1, <m(t)) = 0. Then from (2.1) we obtain, with the accur- 

acy of up to the second order terms in E, 

(E) = ek, + &?A (k,, k,; u) Q (P) + 0 (8”) (2.3) 
A (/cl, k,; u) = k, [k, (1 + c2) - k,l, 0' = <cc (t)'> 
AE G (5) - 5, = e*k,k,o?Q (P) $ 0 (es) (2.4) 

where AEis the nonsteady shift in the degree of conversion caused by periodic variation in 

the reagent concentrationatthe reactor input, and c,% is the degree of conversioninthesteady 

mode. From (2.3) and (2.4)itfollows that in the presence of the perturbationsintheinitial 
concentration, the dispersion 8 = (cc"> exerts direct influence on the magnitude of the mean 

degree of conversion (0 is the mean square deviation). We see that the term of first order 

in E of (2.3) is independent of the P&let number, therefore further terms must be taken into 

account in the course of examining the dependence of the mean degree of conversion on the 
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longitudinal stirring intensity. 
Analyzing the second order terms in E of (2.3) we see #at the character of the depend- 

ence of the degree of conversion on the P&let number is governed by the sign of the expres- 
sion A (k,, k,, of, since the function a(p) decreases monotonously. Thus the three-dimensional 
space of parameters (k,, k,, u) is split by the surface A (k,, k,, of = 0 into two regions in which 
the longitudinal stirring has different effect on the mangitude of the mean degree of convers- 
ion. This enables us to indicate, at every point of the (k,, k,, u)-parameter space, the optimal 
P&let number which ensures the maximum mean degree of conversion in the reactor. From (2.3) 
we see that the sign of the function A depends on two parameters only, namely on k,ik, and o. 
This enables us to carry out the analysis on the plane (k,‘lk,‘, u), shown in Fig-l. The para- 
bola A = 0 divides the plane into two regions. When A > 0 (k,‘/k,’ < 1 + CI?) the mean degree of 

P’ co 

l7 a5 ‘l”z 6 

Fig.1 

conversion increases monotonously with the increasing longitudinal 
stirring intensity (diminishing P&let number) and reaches its max- 
imum value in the reactor with perfect stirring (P* = 0). When A< 
0 (k,‘lk,‘> 1 + u'),the mean degree of conversionincreasesmonotonously 
with decreasing longitudinal stirring intensity (increasing P&let 
number) and reaches its maximum value in a reactor with perfect dis- 
placement (P* = ~0). Wenote that in the steady mode (a = 0) the 
character of the effect of the longitudinal dispersion on the mean 
degree of conversion is governed by the sign of the expression 1 - 
k,‘ik,‘. Thus if the values of the dimensionless rate constants are 
such that k,‘/k,‘> i, then the passage from the steadytothenonsteady 
mode of operation will be accompanied by a change in the manner in 
which the longitudinal stirring affects the mean degree of convers- 
ion at some value of the perturbation dispersion (the sign of the 
derivative d<E)idP will change). This will lead to the change in 
the type of the optimal reactor. In the steady mode the reactor 
with perfect displacement (P* =oo)is optimal, andinthenonsteady 
mode it is the reactor with perfect stirring (k'* = 0) that is optimal. . ..I 

If on the other hand k,‘ik,‘< 1, then the passage from the steady to the nonsteady mode will 
not affect the character of the effect of the longitudinal stirring on the meandegreeofcon- 
version and the optimal reactor type (P* = 0) will remain the same. 

The results obtained lead to conclusion that a chemical reactor with an optimal level of 
longitudinal stirring in the steady mode is, generally speaking, not optimal under the non- 
steady conditions. 

We illustrate the results obtained by considering two particular cases in which the 
dependence of the initial concentrationofthe reagent A is defined in specific terms. Let the 
initial concentration vary according to the harmonic law o(t) = gsinot,O<g< 1. Then CT = g&f/% 
o<o< l/l/l The results obtained above enable us to reach the following conclusions ragard- 
ing the effect of the perturbation amplitude g on the character of the dependence of the mean 
degree of conversion on the longitudinal stirring (see Fig.1 where the point CV= 1/1/H corres- 
ponds to the maximum possible perturbation amplitude). If kl’/ka) E$ 11; 1.51, then the perturbations 
in the initial concentration do not affect the character of the dependence of the mean degree 
of conversion on the P&let number, i.e. the sign of the derivative d (E,ldP does not dependon 
the amplitude g. If k,‘/k,’ E[$; 1.51, then at certain value of the perturbation amplitude the 
character of the effect of the longitudinal stirring on the mean degree of conversion will 
change, i.e. the dertivative d c&ldP will change its sign, and so will the type of reactor 
ensuring the maximum degree of conversion. Thus the perturbation amplitude can influencesign- 
ificantly the character of the dependence of the mean degree of conversiononthe P&cletnumber. 

As the second example we consider a periodic step-wise, dependence of the initial concent- 
ration on time 

Here T1 is the period of the function q(r), y is a fraction of the period, and 'y+,cp_&O. Using 
the condition co) =O we can obtain from (2.5) $= (&='p+'p-. It is clear that in this case 
the dispersion may vary over the interval [O,ool. Therefore if k,‘ik$‘>i, then a functionofthe 
type (2.5) exists such that the passage from the steady to the nonsteady mode of operation is 
accompanied by the change in the sign of the derivative d<B$3P, and hence also in the type of 
the reactor ensuring the maximum degree of conversion. If on the other hand k/tu,‘<i, then 
the change to the nonsteady mode does not produce a qualitative change in the character of the 
relation @)(P). 

The case when the values of A are nearly zero requires a special treatment in which the 
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expression for the mean degree of conversion must be analyzed with the accuracy of up to the 

terms of third order in e. 

be, b = 0 (1). 
Let us consider the neighborhood of the curve A = 0. Let A/k, = 

Expanding the coefficients of (2.1) into a Taylor series in powers of F we 
obtain the following expression for the arbitrary variation in the reagent concentration at 

the reactor input CAj (t) = 1 + 'p (0 : 

We note that the expression (2.6) can be obtained by direct solution of the problem (1.1) with 

the parameters chosen appropriately. We see from (2.6) that the effect of the longitudinal 
stirring on the mean degree of conversion is determined by the relation Q,(P, fi, a) where fi 

and a are regarded as parameters. Depending on the values of these parameters, the function 
Q,(P) may be monotonously decreasing, monotonously increasing, or have a maximum. 

The optimal P&let number P*ensuring the maximum mean degree of conversion is a function 

of a point on the parametric (a, fi)-plane. The surface P* = P* (a, p) can be defined using 
(2.6) by the following implicit equation: 

~~,gsr'(p*)-uS2,'(P*)--R21(P*)=O (2.7) 

The isolines on the surface (a, p) corresponding to the fixed valueofthevalueP&let number 

(intersection of the surface (2.7) by the planes P = con&) are straight lines, the equations 

of which are obtained from (2.7) 

p = am (P) A- II (P) 

m(p)== +C={+[$(e-e- l)+ IOe-I'+ Z] + se-P+ I][$(~-p-1) +e-!'+ 11-l 

(2.8) 

Thus the surface p* = P* (a, p) is a ruled surface. Setting any value of the P&let number 

and using the explicit expression for the functions m(P) and n (P), we obtain the coefficients 

for the equations (2.8) of the isolines. Fig.2 depicts the relationships for m(P) and n(p), 

and we see that these functions are monotonously decreasing and vary over the interval l<(m, 

n) < 2. Fig.3 shows the isolines (2.8) for various valuesofthe P&let number. We see that 

they divide the parametric (a, p)-pl ane into three characteristic regions and donotintersect 

when a‘-,O. In the region P > ~(CC + 1) the function Q,(P) is monotonously decreasing, there- 

fore the longitudinal stirring increases the mean degree of conversion and the maximum mean 

degree of conversion is attained in a reactor with perfect stirring (p* = 0). In the region 

p<afl relation Q,(P) increases monotonously, therefore the longitudinal stirring reduces 

Fig.2 Fig.3 Fig.4 

the mean degree of conversion and the maximum mean degree of conversion is attained in a re- 

actor with perfect displacement (P* = m). In the region a + I< p< 2(*. + 1) Q,(P) is not 

monotonous, has a maximum and the longitudinal stirring can therefore reduce, or increase 

(depending on the Pe'clet number) the mean degree of conversion. The maximum mean degree of 
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conversion is reached in the reactor with intermediate level of stirring (O-C P* < a~) andthe 
Pgclet number corresponding to the optimal stirring level lies on the surface (2.7). 

Fig.4 depicts the surface (2.7) intersected by the plane ‘a = Comt, for various valuesof 
a. We note that the case a = 2 corresponds to the steady mode (m(t)= 0) and the case a = 0 

to the autocatalytic reaction discussed in /lo/. 
From (2.6) we see that to find the parameters a and $which determine the character of 

the relation connecting the mean degree of conversion and the P&let number, we must know four 
quantities: k,‘, k,‘, <cp”> and ($>. The first two quantities are obtained from the chemical 
kinetics, and the last two are functionals of the perturbation in the initial reagent concen- 
tration. The dispersion u? = (cp"> characterises the spread of the initial concentration about 
the mean steady value, and the third moment ($> characterizes the degree of symmetry of the 
initial concentration perturbations relative to its mean value. Thus the spreadandthedegree 
of symmetry of the input perturbations affect significantly the dependence of the mean degree 
of conversion on the longitudinal stirring intensity. 

As an example, we shall consider a periodic step-wise dependence of the input concentra- 
tion on time (2.5). We have 

<cpV = %?J-('p+ -e-)-Q") Cm*-cp-, (2.9) 

Analyzing Fig.3 and the expression (2.91, we can conclude that in this case the variation in 
the symmetry of the input concentration perturbation (value of c&) can lead to a change in 
the character of the dependence of the mean degree of conversion on the P&let n~er,a~~ough 
the spread of the perturbations (($J) may still remain unchanged. 

In the case of symmetric perturbations <$> = 0 (the harmonic perturbations or the, step- 
wise perturbations at v+ = cp_ can serve as examples) and the position of the point in the 
parametric (a, P)-plane is determined by the following three parameters only: k,‘, kl’, (T?. Fig.5 
shows the relationships (a(u), j3 (0)) f or fixed values of the reaction rate constants li,‘iike’ = 
1, 2;k,’ = 0.03 for the mean square deviation s varying over the interval LO, 11 (curve I) and 
isoline p* = eonst. The arrow on curve I shows the direction in which the parameter (I increas- 
es. Fig.1 shows, for comparison, the straight line k,‘fk,’ =1,2. by means of dashes. We see 
that curve 1 has three characteristic segments. On the segment D.21 the mean degree of con- 
version increases monotonously with increasing P&let number and attains its maximum value in 
the reactor with perfect displacement. Point Dcorresponds to the value o=o andthevalue 
of (T, at the point Mis given by the equation 

On the segment MN the mean degree of conversion passes through a maximum at a finite value of 
the P&let number, assuming its maximum value in a reactor with intermediate stirring level. 
The optimal P&let number is determined by the intersection of curve 1 with the corresponding 
isoline, and the value o0 at the point Nis given by the equation 

B (0) = 2 [a (IJ) t- 11 

On the segment NR the mean degree of conversion decreases monotonously with increasing P&let 
number and assumes its maximum value in a reactor with perfect stirring. The point R corres- 
ponds to the value CJ= 1. We note that the point S on curve 1 has the corresponding value of 
0=1/y'% which corresponds to the maximum amplitude of the sinusoidal perturbations. At the 
point R we gave G= 1, which corresponds to the maximum amplitude of the symmetrical, step- 
wise perturbations. Thus, depending on the magnitude of the mean square deviation of the in- 
put concentration perturbations from its mean value , we can have three different situations. 
The reactor with perfect displacement is optimal for 0.c o,c sm. the reactor with intermediate 
stirring level for o,<a<o, and the reactor with perfect stirring is optimal for cr,,,;s 6 
1. In the general casetheoptimal P&let number P* is a function of four parameters: h-,', k,', 

e, <$>. The equation of the level surfaces P* (k,‘, k,‘, a, <tp">) = const can be obtained from 
(2.6)- (2.8). Fig.6 shows, as an example, the intersections of the level surface P*(k,‘, k,‘, 
(J, 0) = 0 by the planes u =: const. and this gives some idea of the configurations of the level 
surfaces for the case of symmetrical perturbations. 

Thus the analysis carried out in the weak chemical reaction approximation indicates a 
complex dependence of the mean dynamic characteristics on the P&let number. The reactor 
characteristics together with the functionals of the input perturbations serve as the defining 
parameters, and the presence of periodic perturbations in the reagent concentration at the 
chemical reactor input can change fundamentally the character of the relation connecting the 
mean dynamic reactor characteristics and the longitudinal stirring intensity, as comparedwith 
the steady mode of the process. This suggests that the analysis of the steady modes turnsout 
to be insufficient for solving the problem concerning the advisability of choosing one or 
another type of the chemical reactor by means of mathematical modelling. 
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